Flanged Sections

The effective width of flange, over which uniform stress conditions can be assumed, may be taken as $beff = b_w + b'$, where

$$b' = 0.1(a_w + l_0) \le 0.2l_0 \le 0.5a_w$$
 for L beams $b' = 0.2(a_w + l_0) \le 0.4l_0 \le 1.0a_w$ for T beams

In the above expressions, $b_{\rm w}$ is the web width, $a_{\rm w}$ is the clear distance between the webs of adjacent beams and l_0 is the distance between successive points of zero-bending moment for the beam. If $l_{\rm eff}$ is the effective span, l_0 may be taken as 0.85 $l_{\rm eff}$ when there is continuity at one end of the span, and 0.7 $l_{\rm eff}$ when there is continuity at both ends.

For **up-stand beams**, when considering hogging moments, l_0 may be taken as 0.3leff at internal supports and 0.15 l_{eff} at end supports.

 $l_{eff} = 8000 \text{mm}$; $a_w = 4000 \text{mm}$

 $I_0 = 0.85 I_{eff}$ continuity at one end

I₀ =0.70 I_{eff} continuity both end

up-stand beams

 $I_0 = 0.3 I_{eff}$ at internal supports

 $I_0 = 0.15 I_{eff}$ at end supports

Example:

L beam:

b' = 0.1(4000 + 0.85*8000) < 0.2*0.85*8000 < 0.5*4000 for continuity at end.

=1080<1360<2000 Least =1080mm

 $b_f = b_w + 1080$

=230+1080=1310mm if $b_w=230$ mm

Er.T.Rangarajan